Applications | Photoluminescence

Lake Shore — environment by JANIS

Photoluminescence (PL) is a purely optical experiment. The sample is cooled to cryogenic temperatures under a vacuum and exposed to radiation, usually in the visible spectrum. This radiation causes the atoms in the sample to enter an excited state. When the atoms return to a lower energy state, they emit radiation, which is measured by a detector. This luminescence yields a great amount of information about the electronic structure of the sample.

While PL measurements can be performed at any temperature range, performing PL measurements at cryogenic temperatures can yield information about low energy states that thermal effects at room temperature would otherwise hide.

For the purpose of selecting a cryostat, it is useful to separate PL measurements into two categories: Macro-PL (or just PL) and Micro-PL.

Standard macro-PL measurements are performed on bulk samples. The optics used to collect the PL signal do not necessarily need to be very close to the sample, and the vibration levels with our standard open and closed-cycle systems are generally acceptable.

Most standard Lake Shore optical cryostats that cool the sample in a vacuum environment are suitable for PL measurements. Closed-cycle refrigerator vacuum cryostats are a great choice for cryogen-free operation.

If you prefer a lower-cost system that uses LHe, the continuous flow ST-100 Series cryostats are the most affordable open-cycle LHe systems.

4 K closed-cycle CCS-100

CCS-100 4 K CCR

Continuous flow open-cycle ST-100

ST-100 continuous flow cryostat

The excitation beam and the PL signal are usually in the visible spectrum, so UV-grade fused silica is an ideal window material for this measurement. If fluorescence in the UV range (below 300 nm) is not a concern, less expensive fused quartz windows may also be acceptable.

When a cryostat is combined with a commercially available spectrometer, a more compact window block may be necessary to fit the cryostat in the sample compartment. In this case, adapting the 10 K CCS-300 Series is recommended. The ST-300 would be the choice for an open-cycle cryostat.

ST-300 compact optical system

ST-300 standard SuperTran continuous flow cryostat

When performing micro-PL measurements on very small samples, such as quantum dots, the experimental requirements are more demanding. High positional stability and low vibration are absolutely necessary in order to keep the optics focused on the sample throughout the course of the measurement.

The Lake Shore ST-500 is the most popular choice among our open-cycle systems for micro-PL measurements. With a vibrational amplitude guaranteed to be ±15 nm or less (with proper mounting), the ST-500 has the lowest vibrational amplitude of all Lake Shore open-cycle systems. A specially designed heat exchanger with the cryogen inlet and vent ports pulling in opposite directions results in the lowest positional drift upon cooldown of any Lake Shore system.

The optical signal in micro-PL is typically collected using a microscope objective with a high numerical aperture and a short working distance of a few millimeters at most. Therefore, the sample must also be placed very close to the window.

The distance from the sample holder to the inner surface of the window is specified when ordering the ST-500. Additional sample holders may be ordered for different sample-to-window distances if necessary. Lake Shore recommends a distance of at least 2 mm between the sample and the window to prevent the window from cooling and collecting condensation. However, some microscope objectives require a shorter working distance. We will make the sample holder as close to the window as necessary, as long as our customers are aware that the window may get cold if the sample is less than 2 mm from the window.

Some commercially available PL systems use a microscope for the sample mounting stage. The ST-500 will fit in many popular microscopes, but for some models, it may be too high or too large in diameter.

When a cryostat with a more compact profile is required, Lake Shore offers the ST-500-C (compact). The ST-500-C is built using the same design as the ST-500, so it has similar specifications for vibrational amplitude and positional drift. The ST-500-C does consume more LHe than the standard ST-500, so the long-term operating costs will be higher.

ST-500

ST-500 microscopy SuperTran cryostat

ST-500-C

ST-500-C Compact Microscopy Cryostat

Scanning the surface of a sample may be useful in micro-PL measurements. Lake Shore offers custom configurations of the ST-500 that include nano-positioning stepper and scanner stages for ultra-precise positioning of the sample in the optical path.

Custom ST-500 with 3-axis nanopositioning stepper and scanner stages for precision sample positioning

ST-500 with 3-axis attocube stepper scanner stages

The ST-500 is a very versatile system. The basic ST-500 can be easily converted from a micro-PL setup into a different configuration for other experiments simply by changing sample holders, electrical feedthroughs, and top plates.

Micro-PL in a closed-cycle cryostat presents additional challenges. The vibration amplitude of all closed-cycle cryocoolers is of the order of microns or tens of microns, which is usually unacceptable for micro-PL measurements. The Lake Shore model CCS-XG system is a special vibration-isolated cryostat that includes a 10 K or 7 K closed-cycle cryocooler. While the vibration levels are known to be less than ±45 nm, the sample drift during cooldown is not as low as in the ST-500. The sample holder in the CCS-XG is connected to the cooling stage by an OFHC copper bar. This copper bar will contract towards the cryocooler during cooldown and expand away from it upon heating.

Vibration-isolated custom CCS-XG with mounting stand

Vibration-isolated CCS-204-XG-M with mounting stand

Contact us today for details of how our systems can be integrated into your laboratory.