

Focus your research with *CryoComplete

With CryoComplete[™], you can start making cryogenic electrical measurements as soon as it lands in your lab. From the simple-to-use, pour-fill LN₂ Dewar to the prewritten I-V (resistance) measurement routines, CryoComplete produces results right out of the box.

While easy to use, the system's performance doesn't disappoint. Its industry-leading measurement electronics promote low-level DC measurements and three full channels of lock-in AC capability—the keys to unlocking difficult measurements. Best of all, our cryogenic experts have designed CryoComplete from top to bottom, using cryogenic best practices, to deliver end-to-end system specifications.

Run ultra-low-noise AC/DC measurements with the MeasureReady™ M81-SSM synchronous source measure system. In addition to the M81-SSM-6 instrument, it includes a BCS-10 balanced current source module and a VM-10 DC/AC/lock-in voltmeter module with a combined noise performance (differential) of 4.1 nV/√Hz.

Control temperature within 50 mK with a Lake Shore Model 335 temperature controller, a Lake Shore precision-calibrated silicon diode, and a pre-wired heater. Advanced PID autotuning, pre-programmed sensor calibration, and default cryostat tuning enable fast setup and operation.

Applications and capabilities

From setup to measurement, CryoComplete enhances your cryogenic experimentation.

- Complete measurement system
- Optimized signal path
- Quick lead times

Thermal transport

Materials research

Materials development

Measurement benefits

Sim	ultane	eous	sourc	e/me	asure					
	Syn	chron	ous s	ource	e/mea	asure				
		Low	-nois	e sou	ırce/n	neasu	ire			
			Dua	I AC/	DC s	sourcing				
				Loc	k-in a	utora	nging	3		
					Coi	mmo	n m	easu	rem	ents
					Diffe	erentia	al cor	nducta	ance,	low-frequency
						Diffe	erentia	al cor	ducta	ance, high-frequency
							Res	istano	e, lov	w-temperature
								I-V	chara	cteristics
									The	rmal conductivity
~	~				~				~	
		~			~	~	~	~		

Standard	system	capabi	lities
Standard	Jystein	Capabi	11663

VPF-100 cryostat/335 temperature controller/calibrated silicon diode

Linear systems, sensors

1D materials, thermoelectric materials

Nanodevices, superconducting devices, nonlinear devices

Operating temperature range: 77 K to 500 K

Cryogen: Liquid nitrogen

Sample environment: Sample in vacuum

Temperature stability: 50 mK

Pour-fill reservoir capacity: 1.2 L LN₂ Cooldown time: 15 min to 77 K

Working time: 8 h

Optical ports: 4 quartz windows

Electrical sample mount: Pre-wired mounting plate with 8 contact pins

Resistance/I-V measurements

M81-SSM-6 with balanced current source and voltmeter modules

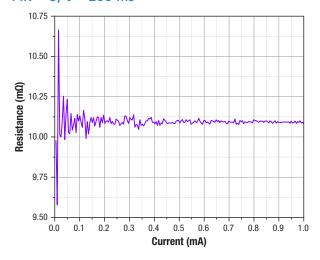
Measurements: 100 $\mu\Omega$ to 1 $G\Omega^*$

Source modes: DC, sine, triangle, square

Source ranges: 1 pA to 100 mA

Source frequency: 100 µHz to 100 kHz (square <5 kHz)

*Upper impedance range limited to DC

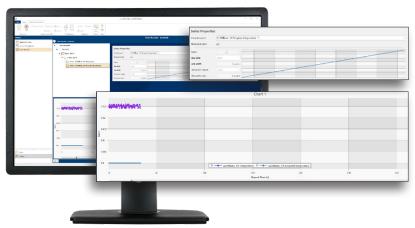

Measurement limit: 10 V maximum Input impedance: >10 G Ω (differential)

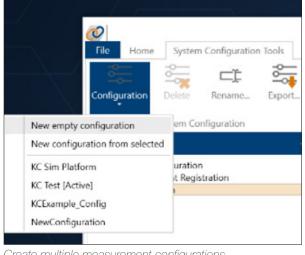
Leakage current at sample: 50 pA at 10 V for coaxial or 50 fA at 10 V for

guarded triaxial

Voltage noise at sample: <5 nV/ \sqrt{Hz} at 83 Hz Measure noise at sample (1/f): <100 nV

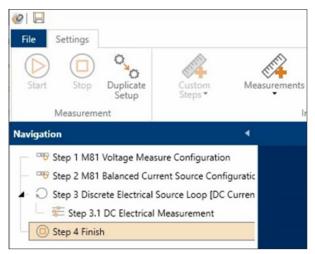
BCS-10 versus VM-10, 10 m Ω resistor, 4-probe, 2TX and 2CXLIA at 83 Hz, FIR = 3, τ = 200 ms




Easily control and monitor your system with MeasureLINK™ software

■ Process view shows a representation of the cryostat internals with the appropriate temperatures highlighted for a better understanding of internal temperature variations (shown is an internal view of a VPF-100 application)

Log all system variables using the chart recorder utility so you can keep a close eye on experiment temperature trends in real-time; it also helps determine when steady-state conditions have been reached



Create multiple measurement configurations

The monitor pane allows easy access to monitor temperature and change control setpoints

Create nested, multi-level measurement loop sequences with drag-and-drop controls, and coordinate the cryostat environment with electrical source sweeps and multi-channel data collection